Nonparametric Generative Modeling with Conditional Sliced-Wasserstein Flows

TL;DR: A nonparametric conditional generative model (without NN & SGD training) achieves promising results.

Introduction

Nonparametric methods enjoy infinite capacity and flexibility but have been less explored in generative modeling. In these work, we

- Reveal the conditional modeling capabilities of SWF
- Introduce inductive biases for image tasks into SWF

Main takeaways:

- The first nonparametric conditional generative model
- Achieve comparable performance with parametric generative models

Background

1D Wasserstein distance (closed form):

$$W_2^2(p,q) = \int_0^1 |F_p^{-1}(\tau) - F_q^{-1}(\tau)|^2 \mathrm{d}\tau$$

Inverse cumulative distribution functions (CDF) $\,$ Associated transport map: $T=F_a^{-1}\circ F_a$

Sliced-Wasserstein distance:

Based on projections: $heta^*(x) riangleq \langle heta, x
angle$

$$SW_2^2(p,q) riangleq \int_{\mathbb{S}^{d-1}} W_2^2(heta_{\sharp}^*p, heta_{\sharp}^*q) \mathrm{d} heta$$

SWF: Gradient flow in the Wasserstein space minimizing SW_2

$$\min_{p \in \mathcal{P}_2(\mathbb{R}^d)} SW_2^2(p,q) \quad \Box \hspace{-0.5cm} \searrow \quad \frac{\partial p_t(x)}{\partial t} + \nabla \cdot (p_t(x)v_t(x)) = 0$$

 p_0

Wasserstein Space

 $(\mathcal{P}_2(\mathbb{R}^d), W_2)$

Velocity field: (Bonnotte 2013; Liutkus et al., 2019)

$$v_t(x) \triangleq - \left(\int_{\mathbb{S}^{d-1}} \psi'_{t,\theta}(\theta^\top x) \cdot \theta \, \mathrm{d}\theta \right)$$

Monte Carlo estimation over unit sphere

$$\psi_{t, heta}'(z) = z - \overbrace{F_{ heta_{\sharp}^{st}q}^{-1} \circ F_{ heta_{\sharp}^{st}p_{t}}}^{-1}(z)$$

one-dimensional CDF estimations

Initial distribution

Target distribution

 $\mathcal{P}_{t} \Leftrightarrow v_{t} : \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$

Paper

Conditional SWF

Experiments

Unconditional Image Generation

<i>Table 1</i> . FID., scores obtained by ℓ -SV	VF on CIE	AR-10 ar	d D	0	0	0	0	0	0	0	5		Î	19	1		雷
CelebA. \diamond Use 160 \times 160 center-cropp	ing. * Use	128×12	28 /	l	1	1	1	{	١	١	Ŵ	I	ñ		7	N	1
center-cropping. † Use 140 × 140 center-	-cropping.		2	2	2	2	æ	2	2	2					简	M	1
Method	CIFAR-10	CelebA	3	3	cD	3	3	3	3	3	E.	1		K	1	1	1
Auto-encoder based VAE (Kingma & Welling, 2013)	155.7	85.7^{\diamond}	ų	4	4	4	4	4	4	4		À	Â	A		ない	
SWAE (Wu et al., 2019) WAE (Tolstikhin et al., 2017)	107.9	$48.9^* \ 42^\dagger$	5	5	5	5	5	5	5	5	3	A	ð1	đđ.		• 2	
CWAE (Knop et al., 2020)	120.0	49.7^\dagger	6	6	6	6	6	6	6	6					Â		
Autoregressive & Energy based PixelCNN (Van den Oord et al., 2016) EBM (Du & Mordatch, 2019)	$65.9 \\ 37.9$		٦ 8	7 8	1- 8	2 8	7 8	7 8	7	7							-
Adversarial WGAN (Arjovsky et al., 2017)	55.2	41.3°	9	9	9	9	9	9	9	9		J.	1	J.	J.	4	J
CSW (Nguyen & Ho, 2022b) SWGAN (Wu et al., 2019)	$36.8 \\ 17.0$	30.0^{*} - 13.2*		Lo	са	lly	-Cc	onr	ne	cte	d P	roj	ect	tio	ns	&	P
Score based NCSN (Song & Ermon, 2019)	25.3	_	100) 20	00	500	100	0 15	00	2000	3000	4500)	200	5(00	100
Nonparametric SWF (Liutkus et al., 2019)	> 200	$> 150^{\dagger}$	1. A A A A A A A A A A A A A A A A A A A			(*) -1			*	94 54	*	₩ •					6
SINF (Dai & Seljak, 2021) ℓ-SWF (Ours)	$\begin{array}{c} 66.5 \\ 59.7 \end{array}$	${37.3^*}\ {38.3^\dagger}$		3 2		ະ •	C	3 C	2	0	0	0		12			

Chao Du, Tianbo Li, Tianyu Pang, Shuicheng Yan, Min Lin Sea Al Lab

SWFs + Visual Inductive Biases

Change the distribution of the projections

Image Inpainting

3222

vramidal Schedules

- SWF (Liutkus et al., 2019)
- + Locally-Connected Projections
- Pyramidal Schedules

Nearest Neighbors

Primary Contact: Chao Du (duchao0726@gmail.com); Code: https://github.com/duchao0726/Conditional-SWF

